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Maths’ Lab: SMO 2010 Open

Maths’ Lab: Elements of solutions.

1 Answer: 50.

We have 8m =962 +360n—400=2n—"T7)(4n* =34 n+61)+27 SO

8 15 — 96 12 + 360 n — 400 27
=42 -34n+61+ .
2n—17 2n—="17

8 13 — 96 1% + 360 1 — 400 27

So as for all #, 4> =341+ 61 € Z, then is an integer if and only if
2n—1 2n—=1

is also an

integer.

27
Thus, if |272—7|>27,itis n>17 ot n< —=10,0 <

<1 so no integer # > 17 fits.

2n—="17

27
So 7 € [-10; 17] such that

€ Z so such that 2 » — 7 divide 27.

2n—="17
As 27 = 33, divisors of 27 are —27; —9; —=3; —1; 1; 3;9; 27 so #is such that 2 » — 7 € {=27; =9; =3; —1; 1; 3;9; 27} .
It comes #» € {—10; —1;2;3;4; 5; 8;17}.
SoZlﬂ|=10+l+2+3+4+5+8+17=50.

nes

Remark:

In terms of congruences, we must have 27 —7=0 (27)so2z=7 (27),2n=-20 (27) and as 2 and 27 are relatively
ptimes, 7= =10 (27), n=17 (27).

Then #=27 £+ 17 such that =27 <27 £+ 17 < 27

So —44 <27 £ < 10.

2 Answer: 199.

2 = 45— 39601] = |x? + 4 x — 39601 &> (x — 4 x — 39601)* — (x* + 4 x = 39601)” = 0.
As (x> = 4x=39601)" = (x? + 4 = 39601)” = =16 x(x? = 199%) = =16 x(x + 199) (x = 199), we obtain
|x? = 42— 39601] = |x2 + 4 x — 39 601] &> x(x + 199) (x — 199) <0 .

It is then trivial that 199 is the largest value of x such that x(x + 199) (x — 199) < 0.

3 Answer: 1159.

As 20° = 8000, for all integer & € {1; ...; 7999}, it exists a € {1; ...; 19} such that &> < £ < (a + 1)° .
Thus for all integer & € {1; ...; 7999}, it exists @ € {1; ...; 19} such that « < £% < (a + 1) and so [ £?] = a.
Therefore x = Z 1+ Z 24 ..+ Z 19.
13<k<2? 25<k<3’ 19°<£<20°
Let’s remark that there are (2 + 1)° — 43 numbers between 4° and (a + 1)° .
S o
x=1x(23 = 1) +2x(3° = 2%) + .. +18%(19° = 18°) + 19%(20° - 19°).
x=—134+23-2x23+2x3% - 3x33 + ... +18x19° = 19x19° + 19%20°
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19
x=19%20° — Z/é.
k=1

” 1 1
Let’s remind that ZE =— n2(n+ 1) so x = 19X 8000 — y x 192 % 20°.

k=1
X

Finally x = 115900 and {—J =1159.
100

4 Answer: 65.
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
For all integer #7206, — == X— X— X—X—-X—X—X...X—X...X— <—X—-X—-X—X— as 0<— <1 for all
! 1 2 3 4 5 6 7 & n 1 2 3 4 /3
integer 6< £<7.
6! 62 63 64 6°
We have — =6,— =18, — =36,— =54and — =064, 8 <65.
1! 2! 3! 4! 5!
6/1
So the smallest positive integer C such that - = C for all positive integers # is 65.
n!

5 Answer: 78.

Theorem: Power of a point with respect to a circle.

With I' a circle and P a point of the plane and 4 a line through P intersecting the circle I' at points A4 and B, the
number P A X P B is independant from line 4 equal to s* — 72 where s is the distance from P to the centre of the
circle I" and r the radius of T".

If dis tangent to circle T at T'then P 1?2 =42 — 2.
Let’s note that if Pis exterior to I', this number is positive, null if Pis on I' and negative if P is interior to I'.
This number is called the power of point P with respect to circle I'.

Let H be the point of I, such that segment HM is a diameter of circle I'; .
Thus the power of point M with respect to circle I is given by M HXM N = M PxXM Q.

The power of M with respect to circle I'y is given by M CXM D=MPXM Q: MHXMN=MCXxMD .

(In fact as M is on line PQ and as P and Q are belonging to both circles I'y and I',, the power of point M with respect
to circle I' is equal to the power of P with respect to circle I'; .)

Let’s note that MD=MN +60 and MH =M C + 60 so we have (M C+ 60)XM N =M CX(M N + 60),

60 M N =60 M C and finally M N = M C.

As MN +MC =N C=060,it falls M N = M C = 30. M is the midpoint of segment C N .

The power of N with respect to circle I'y is given by NCX ND=N _AX NB.
S0 60° = N Ax(2x61 — N A).
N A is solution of the quadratic equation X2 — 1225+ 60% = 0.

The discriminant of this equation is

A =1222 —4x60% = (2% (60 + 1))* — 4X60% = 4X 60> + 860 + 1 — 4x 60> = 484 = 222,
122-22 122+ 22

SoNA:T :5OorNA:T =72.

AsNA>NB,and 122=AB=N A+ N B, then N A=72.

Using Pythagoreas Theorem in the triangle AMN right-angled at N, A M? = 30 + 72% = 6084 = 78 .
Remark:

Finding the saqure root of a number, manually isn’t so difficult.

In fact for instance, as 6084 < 10000, v 6084 < 100.
Supposing it is an integer, we cant write it V 6084 =104+ b, with 2, b € {0; 1; ...; 9}.
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So (10 @+ b)* =100 4> + 20 a b + b* = 6084.
As7?=49<60and 82 =64>60,4=7s010a+ b=70+ b.

So (70 + b)* = 4900 + 140 b + 1? = 6084 = 4900 + 1184 .

As 1? <81, we need 140 4= 1000 so b= 8 or b =9 (in fact 140X 7 = 980).
Therefore as the last digit is 4, 4= 8.

We have 140X 8 + 82 = 1120 + 64 = 1184.

Another way is to decompose 6084 in prime factor.

6084 = 22x32x13% so V 6084 =2x3x13="78.

Answert: 2500.

Theorem: inequality of Cauchy-Schwarz.

n 2 n n
For all real numbers (@) 1<z<, €t (0£)1<p<p» [Zaé bé] < Zﬂkz Zbéz where equality holds for b, =cay for all &
k=1 k=1 k=1

As xp =0 for £=1;..550, with ay=Vx, and b,= the Cauchy-Schwarz inequality yields to

1
eSS ’
50

50 1 ¥ 50 , 1\ 50 )2 50 50 1 50
Vg X ] < (\/ x,é) (—] so[ 1] < Y xex y — and finally 50° < ) x .
; VX,é Z Z VX,é Z ; ;X’é ;

k=1 k=1 k=1
50 50
As the equality holds for x, = 50 for all & (ZSO = 50% 50),then the minimum value of Z:x/6 is 50% = 2500 .
k=1 k=1

Answet: 26.

Supposing (x — p) (x —13) + 4 = (x + ¢) (x + r) yields for x = —g to (=g — p) (=g —13)=—4s0 (g + p) (¢ + 13) =—4

Consequently as p and g are integers, we must have the following cases:
*qg+p=4andg+13=-1sog=-14and p=18
*q+p=—4andg+13=1sog=-12and p=8
*qg+p=2andg+13=-2s0g=-15and p=17
*qg+p=—2andg+13=2s0g=-11and p=9.

As(x=p)(x—=13)+4=(x+¢g)(x+7),then13 p+4=¢gr.

13p+4

Therefore r = and we must have » # ¢ and rinteger.
9
13x18 + 4 13x8+4 13x17 + 4
The first case gives r = ——— = =17, the second r = ——— = -9, the thitd r = —— =-15=4 and
-14 -12 -15

13x9 +4

the fourth r = T =-11=g4.

Therefore there are only two solutions p =18 or p = 8. The sum is 8 + 18 = 20.

Answer: 8038.

1 1 1 1 1 1 1 1V (=1 (k+1)?
Forallinteger &, pe=1-— +—|1-—|=[1-—[|1+-|[1+-|=[1-—[|1+- | =——.
Kk y2 £ k £ £ yA &3
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1x32 2x4% 3x52 (n = 2) #? (n+ 1% (n+1)
It yields to b= X X X...X X = .
! Po Pn =TT T » 4n
(ﬂ+1)2

We must find # such that > 2010 so, as # is a strictly positive integer, we must have # such that

4n
7 +2n+1-2010x47>0andso 7> — 80387+ 1> 0.
Then n(n — 8038) > —1 and as 7 is a strictly positive integer, #(» — 8038) = 0 so » = 8038.

9 Answer: 45.

Let M be the foot of the perpendicular bissector of segment B O.

1 1
Thus M is the midpoint of B O so BM:E OBZZAC=6.

As D and E are the circumcentres of the triangles O4B and OBC then M, D, E are aligned.
M is therefore the foot of the height issued by B in triangle BDE .

1
SoABDE=EDE><BM=3DE.

N

As D is the circumcentre of triangle OAB, the inscribded angle theorem shows that LODB=2LC _AB and as

1
triangle ODB is isosceles, L E D B = E LODB=LCAB.

Identically, we obtain LDEB=L ACB.

Finally triangles BDE and ABC are similar. In fact triangle BAC is right-angled so
T T
LEDB+LDEB=LCAB+LACB= E andthen LDBE = E: triangle DBE is right-angled.

The two triangles have the same angles. They are similar.

DE BM
We deduce T = E\I with IN the foot of the height relative to edge B in triangle ABC.

4 48
Vet BN =0Bsin(L COB)=12x_ =—.

Hence DE =24x— =15.

5

We deduce A ppp =3X%X15=45.

10 Answer: 4.

Note that (x + 1)° +3(x + 1) =23 + 352 + 6x+ 450 f(x) = (x+ 1) +3(x+ 1)+ 10.
We deduce (a+1)° +3(a+1)==9and (h+ 1)’ +3(b+ 1) = 9.



Lfs Maths Lab, SMO Open |5

The function g: x > x> + 3 x is an strictly increasing odd function.
Asgla+1)=glb+1)thena+1=—(b+1).
Soa+b=—=2:(a+b)’=—4.

11 Answer: 11.
tan(@) + tan(f)
Let remain that tan(@ + f)=——— SO
1 — tan(@) tan(pB)
tan(B)+tan(y)
tan(@) + an(B+y) @@+ TS an(@) + tan(B) + tan(y) — tan(a) tan(B) tan(y)
tan(@ + B+y) = = = .
1 — tan(@) tan(B + y) 1 - tan(a) tan(B)+tan(y) 1 — tan(f) tan(y) — tan(@) tan(B) — tan(y) tan(B)
1—tan(pB) tan(y)
X+ y+z3-xy%
With x = tan(@), y = tan(f) and g = tan(y) : tan(@ + S+ y) = .
I=(xy+xz+y3)
1
As cot = —, we also have:
tan
1 1 1 4 xXy+xz+ g 4
—+—+-=—s0o————— =—
x y oz 5 Xz 5
17
X+ y+z=—
JTX 5
1 1 1 17 x+y+x 17
— t—4+—=——s0o——— =——
Xy o Jx X35 X% 5
17 5
5 2 % (%)
Thus we deduce x y g = —g andxy+xz+)/z:3 and ﬁna]lytan(a'+,8+y)=72 =11.
1-3
12 Answer: 22023.

Let note that the shortest routes are composed by 8 moves of 1 km to the left and 10 moves of 1 km to the top.
So the goal here is to count all the possible routes avoiding the two estates.
We consider the points as shown on the figure.

E 8 km B
* ®

10 km <
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We have the routes:
* A —>FE - B:1route.

10 8
*A—- F- B:( 1 )X(l)=80routes.
10 8
e A- G- B:( )X( )21260r0utes.
2 2
'A—>H—>I—>B:( ) ( ) 980 routes.

cA-> |- I—>B( ) (f) (Z) 5880 routes.

) ( )— 1176 routes.

3 2
K X M- 4410
4 1 ( ) = routes.

8 7
*A-> L - 1- B: x( ) 7350 routes.
4 1 3

8 7
e A->L-> M- B:(4)X(l)=490routes.

8
3
*A4-> |- K- B (
e 4> 1.- K- B: (

7 11
e 4> N- B:(l)x( 5 )=385routes.

11
e A- P- B:( 1 )zll routes.

We then have 1 + 80 + 1260 + 980 + 5880 + 1176 + 4410 + 7350 + 490 + 385 + 11 = 22023 routes.

13 Answert: 4021.

We have:
2n n—1 1 n—1
App1 —dy= a,— A, —ad,= Qnay,—n—Va,1—n+1)a,)= (ap—a,—).
n+1 n+1 n+1 n+
So by induction, we obtain
n—1 n—2 n-3 3 2 1 2 2
Ayy1 —apn = X X X...X_X_X_(dz—dl): (622—511): .
n+1 n n—1 5 4 3 (n+1)n (n+1)n
1 1 1 2 2
As— — = a—ay=— — .
n n+1  awln+1) n n+1
Hence
2 2
a,= —— ta
n—1 n
2 2 2 2
ady = -— 4+ - +&Zﬂ_2
n—1 n n=2 n—1
2 2 2 2
a, = -— 4+ - +ﬂﬂ3
n—=2 n n=3 n-—
2 2 2 2 2
a,=———+———+a,=3—
3 n 2 n
2
a,=3—--.
n
2009 2

So the least value of # such that 2z, > 2 +
m

2009

for all # = m is the least value of 7 such that 3 — — > 2 + ——

2010
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2 1
Then — <
m 2010

and » > 4020 . The least value is 4021.

|7

14 Answer: 14.
15 Answer: 3.
Let fbe the function define by f(x) = x° — x> + x — 2.
We havef’(x)=5x4—3x2+ 1.
As the discriminant of 5X?-3X+1is A=-11<0, 5X?2-3X+1>0 for all real X and for X = &2,
5x%=3x%+1>0 for all real x.
Thus the function fis strictly increasing. The polynomial equation f(x) =0, because the degree of f(x) is 5, has a
unique solution over R .
We have f(1)=-1<0and f(2)=24>0sol<a<2.
Thenasa@®=a’—a+2anda®=a*-a?+ 2.
With [@]=n n<a*-a?+2a<n+1 sona<a®—-a’+2a&?<(+1)a and @®=a® - +2, it yields to
na<2a?—-a+2<(n+1)a.
So # must be sucht that Py(a) =2 a@? + (=1 — #) @ + 2 = 0 and such that P,(@) =2a? + (-1 = (z+ 1)) @ + 2 < 0.
The discrimants of the quadratics functions are A = (=1 — ) —4x2x2=r+2n—15and A, =2 +4n—12.
Forn=1,A1=-12<0etA,=-7<0:s07=1doesn’t fit as Py(x) > 0 for all real x.
Forn=2,A1 =-7<0etA,=0:s07=2doesn’t fit as P,(x) = 0 for all real x.
1
Forn=3,A1=0etA,=9>0.80 P(x) =0 for all real x and P, has to roots x :5 <letx,=2s0Pya@)<0.
n =3 can be the value.
1
Forn=4,A, =9 and A, = 20. The roots of P; are x| = E <Tand xy =250 Pi(@) <0: 7=4 doesn’t fit.
We then deduce that [@®| =#=3.
16 Answer: 8030.

First notice that for all £=1, 24+ 1= (k+1)* — £ : thus all odd integer can be written as the difference of two
squares.

No cute number else than 1 is odd.

Observing the even numbers: 2 is cute, 4 is cute, 6 is cute, 8 = 3% — 12 isn’t, 10 is cute 12 =42 — 22, 14 is cute,
16=52-92...

So it looks like that for £> 1, 4 £+ 2 is cute but 4 £ isn’t.

We notice that 4 £= (& + 1)> — (£ — 1)* for all £> 1 and then 4 £ can be written as the difference of two squares.

Let £ be a positive integer > 1.
Suppose that 4 £+ 2= a*> — b* = (a + b) (a — b) with a and b integers.

As 4 £+ 2 is even, then 2 + b and @ — b must be even too. In fact 2 + b and a — b have the same parity and the product

of two odd numbers are odd.
Ityieldsto 42 +2=2 pX2g=4(pq):4 £+ 2is divisible by 4: absurd.
Therefore all numbers of the form 4 £+ 2, £> 1 are cute.

As all integers are or odd or of the form 4 £ or of the form 4 £ + 2, thus the cute numbers are 1, 2, 4 and all the
numbers of the form 4 &£+ 2, £> 1.

The 2010™ cute number is then 4 X 2007 + 2 = 8030.
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17 Answer: 841.
We have:
* flx)=pi(x)(x—=1)+3s0 f(1)=3.
e flx)= pa(x)(x=2)+1s0 f(2)=1.
s f(x)= p3(x) (x=3)+7so f(3)=7.
* fx) = py(x) (x —4) + 36 so f(4)=30.
e f(x) = g(x) (x* = x — 1) + (x — 1) with ¢g(x) a polynomial of degree 3.
As we can notice on the 4 first cases, f(a) is the remainder of f(x) divided by (x — ).
Consequently the remainder of f(x) divided by (x + 1) is equal to f(—1).
Let’s determine f(—1).
The polynomial ¢ is of degree 3 and we have 4 values.
The 4 first divisions yield to —g(1) =3 so ¢(1) = =3, ¢(2)=0,9(3) =1 and ¢g(4) = 3.
a+b+c+d=-3
So with g(x) = a5 + b + e+ d, numbers . b, cand dare solutions of the system: 4 0 T /¥ 2eFd=0
o with ¢(x) =ax x*+ ¢x + d, numbers 4, b, ¢ and d are solutions of the system: 2T At O b+ et dal
64a+16b+4c+d=3
at+b+c+d=-3 at+b+c+d=-3 at+b+c+d=-3
. 4b+6¢c+7d=-24 4b+6¢c+7d=-24 4b+6¢c+7d=-24
We obtain then and finally
18h+24c+26d=-82 6c+11d=-52 6c+11d=-52
48b+60c+ 63d=-195 12¢4+21d=-93 d=-11
-52+121 23 —24+7><11—6><2—23 23 1
Thusd=-11,c=——=—,b= =—4anda=-3+4-—+11=—.
6 2 4 2 2
2
We have ¢(x) =— X — 4%+ — x—11.
2 2
1 23
So Fle) = EX3_4X2+ZX—11 (XZ—X—l)"r(X—l) and
1 23
f-H=[—-4-—-11|x1-2=-27-2=-29.
2 2
The square remainder of f(x) divided by (x + 1) is (=29)% = 841.
18 Answer: 18.

100 2 + 100
We have b = ————
a—100
As bis a positive integer, > 100 .
Let =100 + &', where &’ is a positive integer .

100100 + 100 2’ + 100 10100
It yields to b = =100 +

a a

So &' is a divisor of 10100 = 22x52x 101. There are (2 + 1) (2 + 1) (1 + 1) = 18 divisors of 10100 .

Let notice that each couple (100 + 4,100 + %100 ) where 4’ is a divisor of 10100 yields to a solution .

10100 1010000
In fact 1001100 + & + 100 + =20000+ 100 &/ + ——— and
a a
ab—100= .
10100 1010000 1010000
(100 + &) | 100 + - —100=10000+—, +1OOa'+10100—100220000+1004’+—,
a a a

Consequently there are 18 couples satisfying the equation.
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19 Answer: 17 .

Notice that the power of an odd number is still odd and that the sum of two odd numbers is even, then or p is even or
2 is odd and for instance « is even and 4 odd.

But p can not be even. In fact it will yield to 2 = b =2 and p > 2 and p is divisible by 2.

Hence p is odd. As aand b are prime, and zis even a = 2.

We have p=20+ /2.

By trial and error, with &= 3, b is prime and 23 + 32 =17 which is prime.

So (a, b, p) = (2, 3, 17) is suitable.

Let show that 3 is the only possible value.

Letb=24+1with £= 1.

Suppose that £= 2.

Ifk=3k+1thenb>3and b=24,+1=0k+ 3 is divisible by 3. Absurd because & is prime.

Suppose £% 1 (modulo 3).

p=2r+ P =22 L Qe+ 1) =2X 4+ 42 + 24+ 1.

As4=1 (modulo3),2 + > =4 k(k+ 1)+ 3=4 k(£ + 1) (modulo 3).

Yet or £=0 (modulo 3) then 2” + /=0 (modulo 3): absurd as p=2°+ /? is prime, or £=2 (modulo 3) then
(£+1)=3 (modulo 3) and again p =0 (modulo 3).

Absurd.

Therefore £< 2 and £=1.

Reminder:

We note 2 = & (modulo 7) the relation define by # and 4 have the same remainder in the euclidian division by 7.

20 Answer: 10045.

11

Let consider the linear function f(x)=—— x.
2010

For all integer x € {1;2; ...; 2009}, f(x) €N,

Thus for all integer x€{l1;2;...;2009}, it is clear that

11 x
— | €{0;1;...;10}.
2010

11
X = +
2010

Let count the numbers of each case.

11 x
2010 =182x11 + 8 so
2010

11x2 11x4

= > 0+ > A4+ D10

2010 :
\‘11.\J=0 {1I¥ -1 {11.\J=10
2010 2010 2010

2010 2010 2010

{11X3

{11X2009J

J=0forlsx5182.

11 x

2010%x2=2%x182x11+2%x8=(2x182+1)x11 +5 so LOloJ:l for 182+ 1 <x <2X182 + 1. There are 183 x’s
suitable.

11 x
2010x3=(2x182+1)x11 +5+182%11+8=(3x182+2)x11 +2 SO — =2 for

2010
2X 182 + 2 <x<3X182 + 2. There are 183 x’s suitable.

11 x
2010x4=3%x182+2)x11+2+182x11+8=(4x182+2)x11+ 10 SO {%J=3 for

3% 182+ 3 < x <4X182 + 2. There are 182 x’s suitable.

11 x
2010xX5=(4x182+2)x11 +10+ 182x11+8=(5%x182+3)x11 +7 SO {—Jzzx for
2010
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4%x182 + 2 <x=<5X%X182 + 3. There are 183 x’s suitable.

2010X6=(5%x182+3)x11 +7+182%11+8=(6X182+4)x11 +4 SO % =5 for
5% 182+ 4 < x < 6X182 + 4. There are 183 x’s suitable. ) _

20107 =(6X182+4)x11 +4 +182%x11 +8=(7x182+5)x11 + 1 SO % =6 for
6X182 +5=<x=<7x%x182+ 5. There are 183 x’s suitable. ] _

2010x8 =(7x182+5)x11+1+182%x11 +8=(8%x182+5)x11+9 SO % =7 for
7x182 + 6 < x < 8% 182 + 5. There are 182 x’s suitable. ] -
2010x9=(8X182+5)xX11 +9+182%11+8=(9%x182+6)x11+6 SO % =38 for
8X 182 + 6 < x < 9% 182 + 6. There are 183 x’s suitable. ] _
2010x10=(9%x182+6)x11 +6+182x11+8=(10%x182+7)X11+3  so {%J=9 for
9% 182+ 7 <x<10X182+ 7. Thete are 183 x’s suitable.

2010x11 =(10%x182+ 7)x 11+ 3+ 182x11+8=(11%x182+8)x11+0 so {%J:m for
10X 182 + 8 <x < 11X 182 + 7. There are 182 x’s suitable. Let note that 11X 182 + 7 = 2009 .

F i n a 1 1 y

X=

182X0+183X1+183X2+ 182X3 +183X4 +183%X5+ 183X 6+ 182X 7 + 183X 8 + 183X 9 + 182x 10 = 10045

Remark:

11
One can also remark that X is the number of grid points under the segment with equation y =—— x with

0=<x=<2009.
This number is half the number of grid points inside the rectangle defined by the points (0, 0), (2010, 0), (11, 2010)
and (0, 11) , without the border, as there are no grid points on the line inside the rectangle.

21 Answer: 2007.
Let prove by induction that for #» = 3 distinct numbers, for any arrangement, the number of friendly pairs is n — 3 .
For 7 =3, there are no friendly pairs as each number is neighbour to the others two. So the induction hypothesis is true
forn=>3.
Let assume that for # distinct numbers there are # — 3 friendly pairs.
Consider 7 + 1 distinct numbers. Let note IN the largest one.
By deleting N, there are » numbers left.
The two numbers neighbours of N used to form a friendly but are not a friendly pair anymore after N is deleted.
All the others frienfly pairs remain friendly pairs after N is deleted, as N is the largest number.
And as N is the largest number, there was no friendly pair with N .
By induction hypothesis, there are # — 3 firendly pairs with the » numbers left after N is deleted and only 1 fizendly pair
has been deleted by deleting IN.
Therefore there are (2 — 3) + 1 = (n+ 1) — 3 friendly pairs with # + 1 distinct numbers.
The induction principle states that for all #» = 3, there are # — 3 fiiendly pairs with # distinct numbers.
Consequently there are 2007 friendly pairs with 2010 numbers.
22 Answer: 12345.

For y =% =0, we obtain f(x?)=ux f(x)(1).
Then forx=0and y=z3, f(y fO) =y /(1N 2).
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For x=0, and y=1, f(1 f(3) =z f(1) so f(f(x))= f(1)x(3) for all real x . In particular, for x = x?,
JU6D) = f(1) 52

Then as f(x?) =x f(x) (1) and as f(x f(x)) = x f(x) (2) we obtain f(f(x?)) = f(x f(x)) =x f(x).

It follows x f(x) = f(1) x? for all real x and for x £ 0, f(x) = f(1) x.

Let’s remark that 7(0) = 0 so the equality holds for x = 0.
For all real x, f(x) = f(1)x.

Note that f(f(1))= f(I1x f(1))=1x f(1) = f(1) and f(f(1))= f(1)X f(1) = (f(l))2 so (f(l))2 = /(1) and then
FM(fA)=1)=0:0r f(1)=00r f(1)=1.

As fis a non-zero real valued function, /(1) # 0. In factif /(1) =0, f(x) = 0Xx for all real x.

In conclusion f(x)=1Xx = x for all real xand f(12345) = 12345.

23

Answet: 86422.

24

Answer: 309.

25

Answer: 2011.



