Maths Lab: Wordings

Maths Lab: Elements of solution

Singapore Mathematics Olympiad Senior Section 2010 Duration: 2 h30.

The number of \Diamond indicates the relativ difficulty of the question.

Multiple Choice Questions

1 Answer (A).

Find the value of $\frac{(1 \times 2 \times 3) + (2 \times 4 \times 6) + (3 \times 6 \times 9) + \dots + (335 \times 670 \times 1005)}{(1 \times 3 \times 6) + (2 \times 6 \times 12) + (3 \times 9 \times 18) + \dots + (335 \times 1005 \times 2010)}.$ We have $\frac{(1 \times 2 \times 3) + (2 \times 4 \times 6) + (3 \times 6 \times 9) + \dots + (335 \times 670 \times 1005)}{(1 \times 3 \times 6) + (2 \times 6 \times 12) + (3 \times 9 \times 18) + \dots + (335 \times 1005 \times 2010)} = \frac{(1 \times 2 \times 3)[1 + 2^3 + 3^3 + \dots + 335^3]}{(1 \times 3 \times 6)[1 + 2^3 + 3^3 + \dots + 335^3]}$ then $\frac{(1 \times 2 \times 3) + (2 \times 4 \times 6) + (3 \times 6 \times 9) + \dots + (335 \times 670 \times 1005)}{(1 \times 3 \times 6) + (2 \times 6 \times 12) + (3 \times 9 \times 18) + \dots + (335 \times 1005 \times 2010)} = \frac{1}{3}.$

2 Answer (E).

Lets *a*, *b*, *c* and *d* be real numbers such that $\frac{b+c+d}{a} = \frac{a+c+d}{b} = \frac{a+b+d}{c} = \frac{a+b+c}{d} = r$.

As $r + 1 = 1 + \frac{b+c+d}{a} = \frac{a+b+c+d}{a}$ so a(r+1) = a+b+c+d. Identically, b(r+1) = c(r+1) = d(r+1) = a+b+c+d so (r+1)(a+b+c+d) = 4(a+b+c+d). Thus we obtain (r-3)(a+b+c+d) = 0. Then r = 3 or a+b+c+d = 0. Yet a+b+c+d = 0 gives -a = b+c+d so $\frac{b+c+d}{a} = \frac{-a}{a} = -1$ and identically -b = a+c+d, -c = a+b+d and -d = a+b+c so $\frac{a+c+d}{b} = \frac{a+b+d}{c} = \frac{a+b+c}{d} = -1$.

Finally, r = 3 or r = -1.

3 $\diamond \diamond$ Answer (E).

If $0 < x < \frac{\pi}{2}$ and $\sin(x) - \cos(x) = \frac{\pi}{4}$ and $\tan(x) + \frac{1}{\tan(x)} = \frac{a}{b - \pi^{c}}$, where *a*, *b* and *c* are positive integers, find the value of a + b + c. As $\sin(x) - \cos(x) = \frac{\pi}{4}$, then $(\sin(x) - \cos(x))^{2} = \frac{\pi^{2}}{16}$. Yet $(\sin(x) - \cos(x))^{2} = \sin^{2}(x) - 2\sin(x)\cos(x) + \cos^{2}(x) = 1 - 2\sin(x)\cos(x)$ thus $\sin(x)\cos(x) = \frac{1}{2}\left(1 - \frac{\pi^{2}}{16}\right) = \frac{16 - \pi^{2}}{32}$. Then $\tan(x) + \frac{1}{\tan(x)} = \frac{\sin(x)}{\cos(x)} + \frac{\cos(x)}{\sin(x)} = \frac{\sin^{2}(x) + \cos^{2}(x)}{\sin(x)\cos(x)} = \frac{1}{\sin(x)\cos(x)} = \frac{1}{\frac{16 - \pi^{2}}{32}} = \frac{32}{16 - \pi^{2}}$. a + b + c = 32 + 16 + 2 = 50

$$\sin(x)\cos(x) = \frac{1}{2}\left(1 - \frac{\pi^2}{16}\right) = \frac{16 - \pi^2}{32}$$
Lfs Maths Lab, SMO Senior [3]

Finally a + b + c = 32 + 16 + 2 = 50.

4 \diamond Answer (C).

The idea here is to decompose a cube in a difference of consecutive terms such that when adding the consecutive numbers 14, 15, ..., 25, there will be simplifications.

Lets note that: $(n(n + 1))^{2} = n^{4} + 2n^{3} + n^{2}$ $(n(n - 1))^{2} = n^{4} - 2n^{3} + n^{2}$ So $(n(n + 1))^{2} - (n(n - 1))^{2} = 4n^{3}$. It follows: $14^{3} = \frac{1}{4} \left(14^{2} \times 15^{2} - 13^{2} \times 14^{2} \right)$ $15^{3} = \frac{1}{4} \left(15^{2} \times 16^{2} - 14^{2} \times 15^{2} \right)$... $24^{3} = \frac{1}{4} \left(24^{2} \times 25^{2} - 23^{2} \times 24^{2} \right)$ $25^{3} = \frac{1}{4} \left(25^{2} \times 26^{2} - 24^{2} \times 25^{2} \right)$ Then $14^{3} + 15^{3} + 16^{3} + \dots + 24^{3} + 25^{3} = \frac{1}{4} \left(25^{2} \times 26^{2} - 13^{2} \times 14^{2} \right) = \frac{1}{4} \left(25 \times 26 - 13 \times 14 \right) \left(25 \times 26 + 13 \times 14 \right)$ and $14^{3} + 15^{3} + 16^{3} + \dots + 24^{3} + 25^{3} = \frac{1}{4} \times 26^{2} \left(25 - 7 \right) \left(25 + 7 \right) = \frac{1}{4} \times 26^{2} \times 9 \times 2 \times 16 \times 2 = 3^{2} \times 4^{2} \times 26^{2}$. We finally obtain $\sqrt{14^{3} + 15^{3} + 16^{3} + \dots + 24^{3} + 25^{3}} = \sqrt{3^{2} \times 4^{2} \times 26^{2}} = 3 \times 4 \times 26 = 312$.

5 Answer (B).

As *ABC* is isosceles, we can deduce that *E* is the midpoint of [*BC*] so $BE = EC = \sqrt{5}$ and that *BC* is perpendicular to *AD*.

Then as *BD* is parallel to *FC*, the Thales' Theorem gives $\frac{BE}{CE} = \frac{EF}{ED}$ so EF = ED. Therefore, as *F* is the midpoint of *OE*, we have $OF = FE = ED = \frac{1}{3}$ $OD = \frac{1}{3}r$ where *r* is the radius of the circle. As the triangle *OEB* is rectangle at *E*, the Pythagoreas' Theorem gives $r^2 = \left(\frac{2}{3}r\right)^2 + \left(\sqrt{5}\right)^2$ and so $r^2 = 9$ and r = 3. Again in the thriangle *EDC* rectangle at *E*, $CD^2 = \left(\frac{1}{3}r\right)^2 + \sqrt{5} = 1 + 5 = 6$ so $CD = \sqrt{6}$ cm.

$6 \qquad \diamond \text{ Answer (E)}.$

y

We know that exists an integer *n* such as $y = n^2$ so $n^2 = (x - 90)^2 - 4907$ thus ((x - 90) - n)((x - 90) + n) = 4907 id est (k - n)(k + n) = 4907 with $k^2 = (x - 90)^2$ and k > 0. As $4907 = 7 \times 701$ with 701 prime number.

(In fact as $25^2 < 701 < 30^2$, we know that if 701 wasn't a prime number it will be divisible by 2,3,5,7,11,13,17,19,23 or 29 and that's not the case.)

 $y = n^2$ $n^2 = (x - 90)^2 - 4907$ ((x - 90) - n)((x - 90) + n) = 4907

(k - n) (k + n) = 4907**4** | Lfs Maths₄bab, <u>SMQ</u>, <u>Sen</u>ior

 $25^2 < 701 < 30^2$

Therefore we obtain:

• k - m = 1 and k + m = 4907, then k = 2454 and n = 2453

 $k^2 = (x - 90)^2 \qquad k > 0$

- k m = 4907 and k + m = 1, then k = 2454 and n = -2453
- k m = 7 and k + m = 701, then k = 354 and n = 347
- k m = 701 and k + m = 7, then k = 354 and n = -347.

As $y = n^2$, we deduce $y = 2453^2$ or $y = 347^2$.

Moreover

• or x - 90 = 2454 so x = 2544 or 90 - x = 2454 so x = -2364: we have 2 ordered pairs (-2364, 2453²) and $(2544, 2453^2),$

• or x - 90 = 354 so x = 444 or 90 - x = 354 so x = -264: we have 2 ordered pairs $(-264, 347^2)$ and $(354, 347^2)$.

7 Answer (D).

Lets describe the cases of non-empty subsets verifying the condition "Good":

- the singletons: only composed by an even number so 5 subsets;
- the pairs: two even numbers or 1 even and 1 odd, so $\binom{5}{2} + \binom{5}{1} \binom{5}{1} = 10 + 25 = 35$ subsets;
- the 3-lists: two even and one odd or three even, so $\binom{5}{2}\binom{5}{1} + \binom{5}{3} = 10 \times 5 + 10 = 60$ subsets;
- the 4-lists: 2 even and 2 odd, 3 even and 1 odd or 4 even, so $\binom{5}{2}\binom{5}{2} + \binom{5}{3}\binom{5}{1} + \binom{5}{4} = 100 + 50 + 5 = 155$

subsets;

• the 5-lists: 3 even and 2 odd, 4 even and 1 odd or 5 even, so $\binom{5}{3}\binom{5}{2} + \binom{5}{4}\binom{5}{1} + \binom{5}{5} = 100 + 25 + 1 = 126$ subsets;

• the 6-lists: 3 even and 3 odd, 4 even and 2 odd or 5 even and 1 odd, so $\binom{5}{3}\binom{5}{3}+\binom{5}{4}\binom{5}{2}+\binom{5}{5}\binom{5}{1}=100+50+5=155$ subsets;

- the 7-lists: 4 even and 3 odd or 5 even and 2 odd, so $\binom{5}{4}\binom{5}{3} + \binom{5}{5}\binom{5}{2} = 50 + 10 = 60$ subsets;
- the 8-lists: 4 even and 4 odd or 5 even and 3 odd, so $\binom{5}{4}\binom{5}{4}+\binom{5}{5}\binom{5}{3}=25+10=35$ subsets;
- the 9-lists: 5 even and 4 odd so $\binom{5}{5}\binom{5}{4} = 5$ subsets;

• the 10-lists: 5 even and 5 odd so 1 subset.

the overall number of subsets is then 5 + 35 + 60 + 155 + 126 + 155 + 60 + 35 + 5 + 1 = 637 subsets.

8 Answer (B).

As f(r) = k and f(s) = k, then r and s are symetric regarding the x-coordinate of the summit of the quadratic function, it is to say $-\frac{b}{2a}$. We then deduce $s + r = 2 \times \left(-\frac{b}{2a}\right) = -\frac{b}{a}$. Thus $f(r+s) = a \times \left(-\frac{b}{a}\right)^2 + b \times \left(-\frac{b}{a}\right) + c = \frac{b^2}{a} - \frac{b^2}{a} + c = c$.

9 $\diamond \diamond$ Answer (D).

Find the number of positive integers k < 100 such that $2(3^{6n}) + k(2^{3n+1}) - 1$ is divisible by 7 for any positive integer n

Note that $2(3^{6n}) + k(2^{3n+1}) - 1 = 2 \times (3^{6})^n + 2k \times (2^{3})^n - 1 = 2((3^{6})^n + k \times (2^{3})^n) - 1$. We have $2^3 = 8 = 7 + 1$ so the remainder of 2^3 in the division by 7 is 1. Thus the remainder of 2^{3n} is 1 too. Identically, $3^6 = (3^2)^3$ so the remainder of 3^6 in the division by 7 is 1, thus the remainder of 3^{6n} is 1. Finally the remainder of $((3^6)^n + k \times (2^3)^n)$ is $1 + k \times 1 = k + 1$. We have to determine the number of positive integers k < 100 such that 2(k + 1) - 1 = 2k + 1 is divisible by 7. So it must exist integer p such that 2k + 1 = 7p, 2k = 7p - 1 = 7(p - 1) + 6 and we deduce that k = 7p' + 3. As $0 \le 7p' + 3 < 100$, $0 \le p' < 13$. We obtain 14 possibilities.

10 Answer (C).

Lets consider point E, intersection of the lines AD et CM.

The angles $\angle AME$ and $\angle BME$ are opposite angles they are congruent.

As lines AD and CB are parallel and line CM is a secant then the angles $\angle AEM$ and $\angle BCM$ are alternate angles and congruent.

Moreover AM = ME as M is the midpoint of AB.

Theregore the triangles *AEM* and *CBM* are congruent.

We deduce AE = CB and ME = CM so AE + AD + DC = 17 and CE = 13 and clearly the area of the trapezium is equal to the area of triangle *CDE*.

The triangle *EDC* is rectangle at point *D*, according to the Pythagoreas' theorem, $C E^2 = C D^2 + D E^2$.

So $13^2 = C D^2 + (17 - D C)^2$ so D C is solution of the equation $2x^2 - 34x + 120 = 0$.

The roots of this quadratic equation are 5 and 12.

(The discriminant is $\Delta = 196 > 0$ so the roots are $\frac{34 - \sqrt{196}}{2 \times 2} = 5$ and $\frac{34 + \sqrt{196}}{2 \times 2} = 12$).

Finally DE = 12 or DE = 5 so the area of the triangle is in both cases $\frac{5 \times 12}{2} = 30$.

Remark:

Let's note *S* the area of trapezium *ABCD*.

Then $S = \frac{1}{2} DE \times DC$ as previously explained.

Now $(DE + DC)^2 = DE^2 + 2DE \times DC + DC^2 = 4S + CE^2$. In fact, Pythagoreas' Theorem in triangle DEC rightangled at D, shows that $CE^2 = DE^2 + DC^2$.

Finally as DE + DC = AD + CD + CB = 17, we deduce $4S + 13^2 = 17^2$ and so S = 30.

Short Questions

11 Answer: x = 132.

Denote *L* et *w* the dimensions of the original rectangle. Then the area is given by $A = L \times w$.

> $(L+6) \times (w-2) = L \times w \qquad -2L+6w-12 = 0 \quad L-3w+6 = 0$ $(L-12) \times (w+6) = L \times w \qquad 6L-12w-72 = 0 \quad L-2w-12 = 0$ (L-3w+6 = 0)

$$\begin{cases} L - 3w + 6 = 0 \\ L - 2w - 12 = 0 \end{cases}$$

L = 48 w = 18 x = 2(L + w) = 132

We then know that $(L + 6) \times (w - 2) = L \times w$ so we obtain -2L + 6w - 12 = 0, L - 3w + 6 = 0. We also know that $(L - 12) \times (w + 6) = L \times w$ so we also obtain 6L - 12w - 72 = 0, L - 2w - 12 = 0. So the dimensions of the original rectangle are the couple solution of the system $\begin{cases} L - 3w + 6 = 0\\ L - 2w - 12 = 0 \end{cases}$ Thus L = 48 and w = 18 so x = 2(L + w) = 132.

12 **♦** Answer: 2575.

For all integer
$$r, u_r = 1 + 2 + \dots + r = \frac{r(r+1)}{2}$$
.
Thus for all integer $j \ge 1$, $\sum_{i=1}^{j} \frac{1}{u_i} = \sum_{i=1}^{j} \frac{2}{i(i+1)}$.
Let's remind that $\frac{1}{i} - \frac{1}{i+1} = \frac{i+1-i}{i(i+1)} = \frac{1}{i(i+1)}$, so $\sum_{i=1}^{j} \frac{1}{u_i} = 2 \sum_{i=1}^{j} \left(\frac{1}{i} - \frac{1}{i+1}\right) = 2 \left(1 - \frac{1}{j+1}\right) = \frac{2j}{j+1}$.
Then $\frac{j}{\sum_{i=1}^{j} \frac{1}{u_i}} = \frac{j}{\frac{2j}{j+1}} = \frac{j+1}{2}$, so $\frac{1}{\left(\frac{1}{u_1} + \frac{1}{u_2}\right)} + \frac{3}{\left(\frac{1}{u_1} + \frac{1}{u_2} + \frac{1}{u_3}\right)} + \dots + \frac{100}{\left(\frac{1}{u_1} + \frac{1}{u_2} + \dots + \frac{1}{u_{100}}\right)} = \frac{1}{2} \sum_{i=1}^{100} (j+1).$
Yet, $\sum_{i=1}^{100} (j+1) = \sum_{i=2}^{101} j = \frac{(2+101) \times 100}{2} = 5150$ so the value of $\frac{1}{\left(\frac{1}{u_1} + \frac{1}{u_2}\right)} + \frac{3}{\left(\frac{1}{u_1} + \frac{1}{u_2} + \frac{1}{u_3}\right)} + \dots + \frac{100}{\left(\frac{1}{u_1} + \frac{1}{u_2} + \dots + \frac{1}{u_{100}}\right)}$ is 2575.

13 Answer: k = 501.

As $2010! = 1 \times 2 \times ... \times 2010$ and as $10 = 2 \times 5$, so it is enough to count how many 5's in 2010!.

We have $2010 = 5 \times 402$ so there are 402 multiples of 5 in the set {1; 2; ...; 2010} and then at least 402 factors 5's in the product 2010!.

Identically, $2010 = 5^2 \times 80 + 10$ so there are 80 multiples of 5^2 in the set {1; 2; ...; 2010}, $2010 = 5^3 \times 16 + 10$ so there are 16 multiples of 5^3 in the set {1; 2; ...; 2010} and finally $2010 = 5^4 \times 3 + 135$ so there are 3 multiples of 5^4 in the set {1; 2; ...; 2010}.

As each multiples of 5^2 is counted in the 402 multiples of 5, and so on, the number of factor 5 in the product 2010! is given by 402 + 80 + 16 + 3 = 501.

So we can assure that $2010! = 5^{501} \times M'$ with M' an integer not divisible by 5.

Clearly there are at list 501 factors 2 in the product 2010! and so $2010! = 10^{501} \times M$ with M an integer not divisible by 10.

$$\begin{aligned} \text{If } a > b > 1 \text{ and } \frac{1}{\log_a(b)} + \frac{1}{\log_b(a)} &= \sqrt{1229} \text{, find the value of } \frac{1}{\log_a(b)} - \frac{1}{\log_a(b)} - \frac{1}{\log_a(b)} \text{.} \end{aligned}$$

$$\text{As } a > b > 1, \frac{1}{\log_a(b)} - \frac{1}{\log_a(b)} > 0.$$

$$\frac{1}{\log_a(b)} - \frac{1}{\log_a(b)} = \frac{1}{\frac{\ln(b)}{\ln(a)}} - \frac{1}{\frac{\ln(b)}{\ln(a)}} = \frac{\ln(a,b)}{\ln(b)} - \frac{\ln(a,b)}{\ln(a)} = \frac{\ln(a) + \ln(b)}{\ln(b)} - \frac{\ln(a) + \ln(b)}{\ln(a)} = \frac{\ln(a)}{\ln(b)} - \frac{\ln(a)}{\ln(a)} = \frac{\ln(a)}{\ln(b)} - \frac{\ln(a)}{\ln(a)} = \frac{\ln(a)}{\ln(b)} - \frac{\ln(a)}{\ln(a)} = \frac{\ln(a)}{\ln(b)} - \frac{\ln(a)}{\ln(a)} = \frac{\ln(a)}{\ln(b)} - \frac{\ln(b)}{\ln(a)} = \frac{\ln(a)}{\ln(b)} - \frac{\ln(b)}{\ln(b)} = \frac{\ln(a)}{\ln(b)} - \frac{\ln(b)}{\ln(b)} = \frac{\ln(a)}{\ln(b)} - \frac{\ln(b)}{\ln(b)} = \frac{\ln(a)}{\ln(b)} - \frac{\ln(b)}{\ln(b)} = \frac{\ln(b)}{\ln(b)} - \frac{\ln(b)}{\ln(b)} = \frac{\ln(b)}{\ln(b)} - \frac{\ln(b)}{\ln(b)} = \frac{\ln(b)}{\ln(b)} = \frac{\ln(b)}{\ln(b)} = \frac{\ln(b)}{\ln(b)} - \frac{\ln(b)}{\ln(b)} = \frac{\ln(b)}{\ln(b)$$

$$a > b > 1 \qquad \frac{1}{\log_{a}(b)} + \frac{1}{\log_{b}(a)} = \sqrt{1229} \qquad \frac{1}{\log_{a}b(b)} - \frac{1}{\log_{a}b(a)} \qquad \text{Lfs Maths Lab, SMO Senior } |\mathbf{7}|$$

$$a > b > 1$$
Then
$$\frac{1}{\log_{a}b(b)} - \frac{1}{\log_{a}b(a)} = \frac{1}{\frac{\ln(b)}{\ln(a)}} - \frac{1}{\frac{\ln(b)}{\ln(a)}} = \frac{\ln(a \ b)}{\ln(b)} - \frac{\ln(a \ b)}{\ln(a)} = \frac{\ln(a) + \ln(b)}{\ln(b)} - \frac{\ln(a) + \ln(b)}{\ln(a)} = \frac{\ln(a)}{\ln(b)} - \frac{\ln(b)}{\ln(a)}.$$
As
$$\frac{\ln(a)}{\ln(b)} - \frac{\ln(b)}{\ln(a)} > 0, \quad \frac{1}{\log_{a}b(b)} - \frac{1}{\log_{a}b(a)} = \sqrt{\left(\frac{\ln(a)}{\ln(b)} - \frac{\ln(b)}{\ln(a)}\right)^{2}}.$$
Lets yet note
$$\frac{1}{\log_{a}(b)} + \frac{1}{\log_{b}(a)} = \frac{1}{\frac{\ln(b)}{\ln(a)}} + \frac{1}{\frac{\ln(b)}{\ln(b)}} = \frac{\ln(a)}{\ln(b)} + \frac{\ln(b)}{\ln(a)} \quad \text{so}$$

$$\left(\frac{\ln(a)}{\ln(b)} - \frac{\ln(b)}{\ln(a)}\right)^{2} = \left(\frac{\ln(a)}{\ln(b)} + \frac{\ln(b)}{\ln(a)}\right)^{2} - 4\frac{\ln(a)}{\ln(b)} \times \frac{\ln(b)}{\ln(a)} = 1229 - 4 = 1225.$$
Finally
$$\frac{1}{\ln(b)} - \frac{1}{\ln(b)} = \sqrt{1225} = 35.$$

Finally
$$\frac{1}{\log_{ab}(b)} - \frac{1}{\log_{ab}(a)} =$$

15 ♦ Answer: 1994.

$$\begin{aligned} \operatorname{As}\left[\frac{2010}{k}\right] &\leq \frac{2010}{k} < \left[\frac{2010}{k}\right] + 1 \text{ then } 0 \leq \frac{2010}{k} - \left[\frac{2010}{k}\right] < 1 \text{ and we obtain } \left[\frac{2010}{k} - \left[\frac{2010}{k}\right]\right] = 0 \text{ if } \frac{2010}{k} = \left[\frac{2010}{k}\right] \end{aligned}$$

$$\begin{aligned} \operatorname{Yet} \frac{2010}{k} &= \left[\frac{2010}{k}\right] \text{ if } \frac{2010}{k} \in \mathbb{N} \text{ so if } k \text{ is a divisor of } 2010. \end{aligned}$$

$$\operatorname{As} 2010 = 2 \times 3 \times 5 \times 67, 2010 \text{ has } 2^4 = 16 \text{ positive divisors.} \end{aligned}$$

$$\begin{aligned} \operatorname{Therefore} \sum_{i=1}^{2010} \left[\frac{2010}{k} - \left[\frac{2010}{k}\right]\right] = 2010 - 16 = 1994. \end{aligned}$$

♦ Answer: 1005. 16

Lets note that for
$$i = 1$$
 to 2010, $f\left(\frac{i}{2011}\right) = \frac{\left(\frac{i}{2011}\right)^{2010}}{\left(\frac{i}{2011}\right)^{2010} + \left(1 - \frac{i}{2011}\right)^{2010}}$ and
 $f\left(\frac{2011 - i}{2011}\right) = \frac{\left(\frac{2011 - i}{2011}\right)^{2010}}{\left(\frac{2011 - i}{2011}\right)^{2010} + \left(1 - \frac{2011 - i}{2011}\right)^{2010}} = \frac{\left(1 - \frac{i}{2011}\right)^{2010}}{\left(1 - \frac{i}{2011}\right)^{2010} + \left(\frac{i}{2011}\right)^{2010}}$.
Therefore $f\left(\frac{i}{2011}\right) + f\left(\frac{2011 - i}{2011}\right) = 1$.
Consequently $f\left(\frac{1}{2011}\right) + f\left(\frac{2}{2011}\right) + f\left(\frac{3}{2011}\right) + \dots + f\left(\frac{2010}{2011}\right) = \sum_{i=1}^{1005} 1 = 1005$.

17 Answer: 216.

If a, b and c are positive real numbers such that a b + a + b = b c + b + c = c a + c + a = 35, find the value of (a + 1)(b + 1)(c + 1).Lets note that as (a + 1)(b + 1) = ab + a + b + 1, (a + 1)(b + 1) = 35 + 1 = 36. Identically, (a + 1)(c + 1) = 36 and (b + 1)(c + 1) = 36. Therefore (a + 1)(b + 1)(c + 1) = 36(a + 1) = 36(b + 1) = 36(c + 1). Then a + 1 = b + 1 = c + 1 so $(a + 1)^2 = 36$ then a + 1 = b + 1 = c + 1 = 6 so $(a + 1)(b + 1)(c + 1) = 6^3 = 216$.

As AB and CD are parallel chords, and as OA = OB and OC = OD (the triangles OAB and OCD are isosceles at O, the perpendicular bissector of [AB] is also the perpendicular bissector of [CD]. It goes through O. Let's note I and J the midpoints of [AB] and [CD] respectively.

Then $AI = \frac{AB}{2} = 23$ and $CJ = \frac{CD}{2} = 9$. Moreover $LIOA = \frac{1}{2}LBOA$ and $LJOC = \frac{1}{2}LDOC$ so as $LAOB = 3 \times LCOD$, $LIOA = 3 \times LIOC = 3 \times W$ with x = LIOC.

The triangles OIA and OJC are rectangle at I and J respectively so we obtain $sin(LIOA) = \frac{IA}{OA}$ namely

$$\sin(3x) = \frac{IA}{r} \text{ and identically, } \sin(x) = \frac{CJ}{r}.$$

Then as $\frac{AI}{CJ} = \frac{23}{9}, \frac{r\sin(3x)}{r\sin(x)} = \frac{23}{9}.$

For all x, $\sin(3x) = \sin(2x + x) = \sin(2x)\cos(x) + \sin(x)\cos(2x)$ then $\sin(2x) = 2\cos(x)\sin(x)$ and $\cos(2x) = 1 - 2\sin^2(x)$ so $\sin(3x) = 2\cos(x)\sin(x)\cos(x) + \sin(x)(1 - 2\sin^2(x))$ and finally $\sin(3x) = 2\sin(x)(1 - \sin^2(x)) + \sin(x) - 2\sin^3(x) = 3\sin(x) - 4\sin^3(x)$. We obtain $\frac{\sin(3x)}{\sin(x)} = \frac{3\sin(x) - 4\sin^3(x)}{\sin(x)} = 3 - 4\sin^2(x)$ and so $3 - 4\sin^2(x) = \frac{23}{9}$. We deduce $\sin^2(x) = \frac{(3 - \frac{23}{9})}{4} = \frac{1}{9}$. As $0 < x < 180^\circ$, $\sin(x) > 0$ and so $\sin(x) = \frac{1}{3}$.

It follows
$$r = \frac{CN}{\sin(x)} = \frac{9}{\frac{1}{3}} = 27$$
.

19 ◊◊ Answer: 2010.

Find the number of ways that 2010 can be written as a sum of one or more positive integers in non-decreasing order such that the difference between the last term and the first term is at most 1.

First lets note that as we consider a sum of one or more positive integers in non-decreasing order such that the difference between the last term and the first term is at most 1, the sum can be written f(x, y) = f(x, y) = f(x, y)

 $s = (a + \dots + a) + ((a + 1) + \dots + (a + 1)) = k a + k' (a + 1)$ with $k, k' \in \mathbb{N}$ and $a \in [[1; 2010]]$.

Second, we know that for each $a \in [[1; 2010]]$, there exists an unique couple (q; r) such that 2010 = q a + r and $0 \le r < a$.

Then 2010 = (q - r)a + r(a + 1).

Thus 2010 is written as the sum of q - r copies of a and r copies of (a + 1).

For each $a \in [[1; 2010]]$, there is only one way to write 2010 this way as the couple given by the division algorithm is unique.

Finally we obtain 2010 ways of writing 2010 a sum of one or more positive integers in non-decreasing order such that the difference between the last term and the first term is at most 1.

20 Answer: 60.

Lets *a* be a positive integer such that $a + (a + 1) + \dots + (a + (n - 1)) = 2010$.

Then
$$n a + \sum_{i=0}^{n-1} i = 2010$$
 so $n a + \frac{n(n-1)}{2} = 2010$ thus $\frac{n(2 a + n - 1)}{2} = 2010$
 $n(2 a + n - 1) = 4020 = 2^2 \times 3 \times 5 \times 67$
 $2 a + n - 1 > n$ $n < \sqrt{4020} = 2\sqrt{1005}$
 $31^2 < 1005 < 32^2$ $n < 2 \times 32 = 64$

$$a + (a + 1) + \dots + (a + (n - 1)) = 2010$$
$$n a + \frac{n(n - 1)}{2} = 2010 \qquad \frac{n(2 a + n - 1)}{2} = 2010$$

2

It gives $n(2a + n - 1) = 4020 = 2^2 \times 3 \times 5 \times 67$. Lets note that 2a + n - 1 > n so $n < \sqrt{4020} = 2\sqrt{1005}$. As $31^2 < 1005 < 32^2$, $n < 2 \times 32 = 64$. Consequently *n* is a divisor of $2^2 \times 3 \times 5 \times 67$ such that *n* < 64. So $n \in \{1; 2; 3; 4; 5; 6; 10; 12; 15; 20; 30; 60\}$. Yet for $n = 60, 2a + n - 1 = \frac{4020}{60} = 67$ gives a = 4.

So 60 is a possible value and the least.

21 ♦ Answer: 2.

As 2!, ..., n! are all even numbers, we can assure that 1! + ... + n! is odd. Therefore as the square of an number is even, if and only if the number is even, we can assure that *m* is odd. There is no solution with *m* even.

As 3!, ..., n! are all multiples of 3, in the eucilidan division of 1! + ... + n! by 3, it remains the same remainder as 1! + 2! divided by 3, it is 0.

Therefore m^2 is a multiple of 3, and as 3 is prime, *m* is also a multiple of 3.

Then *m* is an odd number, multiple of 3: {3; 9; 15; ...}.

As 4!, ..., n! are multiples of 4, the remainder of 1! + ... + n! divided by 4 is the same as 1! + 2! + 3! = 9 divided by 4, it is 1.

Therefore $m^2 = 4 q + 1$ with $q \in \mathbb{Z}$.

This result isn't so intereting here, as the square of any even number has remainder 0 divided by 4, and the square of any odd number has remainder 1 divided by 4.

We just obtain the same result as with 2. m^2 is odd and so *m* also.

As 5!, ..., n! are all multiples of 5, the remainder of $1! + \ldots + n!$ divided by 5 is the same as 1! + 2! + 3! + 4! = 33divided by 5, it is 3.

But there are no natural integer such that its square has remainder 3 divided by 5.

In fact, as any naturel integer can be written 10 a + b with $a \in \mathbb{N}$ and $b \in \{0; 1; 2; ...; 9\}$, $m^2 = 10^2 a^2 + 2 \times 10 a b + b^2$ and because $10^2 a^2 + 2 \times 10 a b$ is divisble by 5, the remainder of m^2 divided by 5 is the remainder of b^2 divided by 5. So we just have to examine the remainder of the squares of 0, 1, ...,9 divided by 5.

integers	0	1	2	3	4	5	6	7	8	9
Remainder of the squares	0	1	4	4	1	0	1	4	4	1

So for all natural integers, the remainder of its square divided by 5 is 0, 1 or 4 not 3.

Consequently there is no positive integers *n* and *m* such that $n \ge 5$ and $1! + 2! + 3! + ... + n! = m^2$.

It remains to study the 4 first cases.

We have:

- $1! = 1^2$ so (n, m) is a pair solution.
- 1! + 2! = 3 and there is no integer such that $m^2 = 3$.
- $1! + 2! + 3! = 9 = 3^2$ so (3, 3) is also a solution.
- 1! + 2! + 3! + 4! = 33 and there is no integer such that $m^2 = 33$.

Finally, we have 2 solutions.

22 ◊◊ Answer: 65.

The triangles ΔABC and ΔABD are right-angled since C and D are points of the circle with diameter AB. Therefore ΔADE is also rectangle.

Additionally, as LDEA and LBEC are opposite angles, they are congruent and so the triangles ΔADE and ΔBCE have the same angles: they are congruent.

$$\frac{DE}{AE} = \frac{CE}{BE} \qquad x = \frac{169 \times 119}{BE}$$

We obtain
$$\frac{DE}{AE} = \frac{CE}{BE}$$
 so $x = \frac{169 \times 119}{BE}$

Let's determine BE.

As ΔBEC is a right-angled triangle, $B E^2 = B C^2 + C E^2 = B C^2 + 119^2$. As ΔABC is a right-angled triangle, $B A^2 = B C^2 + (A E + E C)^2 = B C^2 + 288^2$.

As line *BD* is the angle bissector of the angle $\angle ABC$, we have $\frac{EC}{EA} = \frac{BC}{BA}$.

In fact, this classic resut comes reasoning with the areas of the triangles ΔBCE and ΔBEA .

As E is a point of the angle bissector of the angle $\angle ABC$, E is equidistant to the sides BA and BE.

So the two triangles have heights of common measure.

Let's note h the length of this heights.

$$A_{BAE} = \frac{AB \times b}{2} \text{ and } A_{BCE} = \frac{BC \times b}{2}, \text{ so } b = \frac{2A_{BAE}}{AB} = \frac{2A_{BCE}}{AC} \text{ and finally } \frac{AC}{AB} = \frac{A_{BCE}}{A_{BAE}}.$$

Now as *B* is a common vertex of the two triangles and as the points *A*, *C*, *E* are aligned, they also share the same height b' respectively to vertex *B*.

So far, $A_{BAE} = \frac{AE \times b'}{2}$ and $A_{BCE} = \frac{CE \times b'}{2}$ so $\frac{CE}{AE} = \frac{A_{BCE}}{A_{BAE}}$. Finally we obtain $\frac{AC}{AB} = \frac{CE}{AE}$. Thus, $BC = \frac{119}{169}BA$ and $BA^2 = \frac{288^2}{1 - \frac{119^2}{169^2}} = \frac{169^2(169 + 119)^2}{(169 - 119)(169 + 119)} = 169^2 \times \frac{288}{50} = \left(169 \times \frac{12}{5}\right)^2$ so $BA = \frac{12}{5} \times 169$. Following, $BE = \sqrt{\left(\frac{119}{169} \times BA\right)^2 + 119^2} = \sqrt{\frac{144}{25} \times 119^2 + 119^2} = \sqrt{\frac{169}{25} \times 119^2} = \frac{13}{5} \times 119$. Finally $x = \frac{169 \times 119}{\frac{13}{5} \times 119} = \frac{5 \times 13^2}{13} = 5 \times 13 = 65$.

23 Answer: 72.

It is necessary that $0 \le n \le 190$ and $0 \le m \le 190$.

Moreover, if (m; n) is an ordered pair of positive integers such that m + n = 190, (n; m) also. Lets note $(n; m) \neq (m; n)$ if and only if $m \neq n$.

Then we can suppose $0 \le m \le n \le 190$ so that $0 \le m \le 95$ since $2m \le m + n \le 190$.

Lets $m \in [0; 95]$.

We remark that $190 = 0 + 190 = 1 + 189 = 2 + 188 = \dots 94 + 96 = 95 + 95$, it is 190 = m + (190 - m) for m = 0 to m = 95.

We count 95 ordered pairs (m; n) such that $n \neq m$ and one ordered pair (m; n) such that m = n.

We then count 191 ordered pairs (m; n) such that m + n = 190.

Now we must deduct the pairs such that *m* and n = 190 - m have a positive common divisor > 1.

Lets d be a common divisor of m and n: m + n = dq + dq' = d(q + q') so d(q + q') = 190: d is a divisor of 190.

Lets d be a common divisor of m and 190. So n = 190 - m = dq - dq' = d(q - q') so d is a divisor of n.

Therefore *m* and *n* are relatively prime if and only if *m* and 190 are relatively prime.

As 190 = 2×5×19, divisors of 190 are {1; 2; 5; 10; 19; 38; 95; 190}.

Then $m \in [0; 95]$ is relatively prime with 190 if *m* is not divisible by a divisor of 190.

The positive integer *m*, must not be divisible by 2, by 5, by 10, by 19, by 38 nor by 95.

- There are 48 multiples of 2 belonging to [[0; 95]], 20 multiples of 5 belonging to [[0; 95]], 10 multiples of 10 belonging [[0; 95]]

 [[0; 95]]
 [[0; 95]]

 [[0; 95]]
 [[0; 95]]
 - [0;95]
 - 96

-48 (all even numbers including 0)

-9 (all multiples of 5 that are even)

-2 (multiples of 19 that are even)

$$n = 190 - m = d q - d q' = d(q - q')$$

 $190 = 2 \times 5 \times 19$ $\{1; 2; 5; 10; 19; 38; 95; 190\}$ $m \in [0; 95]$

2π-

to [[0; 95]], 6 multiples of 19 belonging to [[0; 95]], 3 multiples of 38 belonging to [[0; 95]], 2 multiples of 95 belonging to [[0; 95]]. integers m.

It leaves 96

-48 (all even numbers including 0) -9 (all multiples of 5 that are even) -2 (multiples of 19 that are even) -1 (for 95)) = 36

Finally there are 72 ordered pairs (m; n) of positive integers such that m + n = 190.

24 ◊◊◊◊ Answer: 32.

Find the least possible value of $f(x) = \frac{9}{1 + \cos(2x)} + \frac{25}{1 - \cos(2x)}$, where x ranges over all real numbers for which f(x) is defined.

$$f(x)$$
 is defined if $\cos(2x) \neq 1$ or $\cos(2x) \neq -1$ so $x \neq \frac{k\pi}{2}, k \in \mathbb{Z}$.

Moreover, the function f is π -periodic and even, the least possible value of f(x) is reached over $]0; \frac{\pi}{2}[$.

In fact
$$f(x+\pi) = \frac{9}{1+\cos(2(x+\pi))} + \frac{25}{1-\cos(2(x+\pi))} =$$
 and
 $\frac{9}{1+\cos(2x+2\pi)} + \frac{25}{1-\cos(2x+2\pi)} = \frac{9}{1+\cos(2x)} + \frac{25}{1-\cos(2x)} = f(x)$
 $f(-x) = \frac{9}{1+\cos(2(-x))} + \frac{25}{1-\cos(2(-x))} = \frac{9}{1+\cos(2x)} + \frac{25}{1-\cos(2x)} = f(x)$ because the function cosine is

periodic and even.

Let's detemrine its derivative.

For all
$$x \in \mathbb{R} \setminus \left\{ \frac{k\pi}{2}, k \in \mathbb{Z} \right\},$$

 $f'(x) = \frac{9 \times 2 \sin(2x)}{(1 + \cos(2x))^2} + \frac{25 \times (-2 \sin(2x))}{(1 - \cos(2x))^2} = \frac{2 \sin(2x)}{(1 + \cos(2x))^2 (1 - \cos(2x))^2} \left[9 (1 - \cos(2x))^2 - 25 (1 + \cos(2x))^2 \right]$
so $f'(x) = \frac{-8 \sin(2x)}{(1 + \cos(2x))^2 (1 - \cos(2x))^2} P(\cos(2x) \text{ avec } P(X) = 4 X^2 + 17 X + 4.$
For all $x \in] 0; \frac{\pi}{2} [, 2x \in] 0; \pi [$ so $\sin(2x) > 0$.
Clearly, $(1 + \cos(2x))^2 (1 - \cos(2x))^2 > 0$ for all $x \in] 0; \frac{\pi}{2} [$.
Then $f'(x)$ has the opposite sign to $P(\cos(2x))$.
The polynomial $P(X)$ is a quadratic polynomial with discriminant $\Delta = 225 > 0$ so it has 2 roots
 $X_1 = \frac{-17 - \sqrt{225}}{2 \times 4} = -4$ and $X_2 = -\frac{1}{4}$.
We also obtain that $P(X) > 0$ for all $X > -\frac{1}{4}$ or $X < -4$ and negative otherwise.
As for all $x \in] 0; \frac{\pi}{2} [, -1 < \cos(2x) < 1$, there is only one root left for $P(\cos(2x)) = 0$, it is $\cos(2x) = -\frac{1}{4}$.
Because the function $x \mapsto \cos(2x)$ is strictly decreasing over $] 0; \frac{\pi}{2} [$, we can assure that:
 $\cos(2x) = -\frac{1}{4}$ $] 0; \frac{\pi}{2} [x = \frac{1}{2} \arccos(-\frac{1}{4}) = \frac{1}{2} \cos^{-1}(-\frac{1}{4})$
 $\cos(2x) \in] -1; -\frac{1}{4}] x \in [\frac{1}{2} \arccos(-\frac{1}{4}); \frac{\pi}{2} [$ $\cos(2x) > -\frac{1}{4}$ $x \in] 0; \frac{1}{2} \arccos(-\frac{1}{4}) [$
 $P(\cos(2x)) > 0$ $x \in] 0; \frac{1}{2} \arccos(-\frac{1}{4}) [$ $P(\cos(2x)) < 0$ $x \in] \frac{1}{2} \arccos(-\frac{1}{4}) [$

$$P(X) > 0 \qquad X > --- \qquad X < -4$$

 $P(\cos(2x)) = 0 \qquad \cos(2x) = -\frac{1}{4}$ 12 | Lfs Maths Lab, Sfield $\frac{\pi}{2}$ for $-1 < \cos(2x) < 1$ $x \mapsto \cos(2x)$ $\cdot \cos(2x) = -\frac{1}{4}$ has a unique solution over $] 0; \frac{\pi}{2}[, x = \frac{1}{2} \arccos\left(-\frac{1}{4}\right) = \frac{1}{2} \cos^{-1}\left(-\frac{1}{4}\right)$ $\cdot \cos(2x) = -\frac{1}{4}$ has a unique solution over $] 0; \frac{\pi}{2}[, x = \frac{1}{2} \arccos\left(-\frac{1}{4}\right) = \frac{1}{2} \cos^{-1}\left(-\frac{1}{4}\right)$ $\cdot \cos(2x) \in] - 1; -\frac{1}{4}$ for all $x \in [\frac{1}{2} \arccos\left(-\frac{1}{4}\right); \frac{\pi}{2}[$ and $\cos(2x) > -\frac{1}{4}$ for all $x \in] 0; \frac{1}{2} \arccos\left(-\frac{1}{4}\right)[$. Consequently, $P(\cos(2x)) > 0$ for all $x \in] 0; \frac{1}{2} \arccos\left(-\frac{1}{4}\right)[$ and $P(\cos(2x)) < 0$ for all $x \in] \frac{1}{2} \arccos\left(-\frac{1}{4}\right); \frac{\pi}{2}[$. Finally, f'(x) > 0 for all $x \in] \frac{1}{2} \arccos\left(-\frac{1}{4}\right); \frac{\pi}{2}[$ and f'(x) < 0 for all $x \in] 0; \frac{1}{2} \arccos\left(-\frac{1}{4}\right)[$. The function f is then decreasing over $x \in] 0; \frac{1}{2} \arccos\left(-\frac{1}{4}\right)[$ and increasing over $x \in] \frac{1}{2} \arccos\left(-\frac{1}{4}\right); \frac{\pi}{2}[$. It admits a minimum at $x = \frac{1}{2} \arccos\left(-\frac{1}{4}\right)$. This minimum is given by $f\left(\frac{1}{2} \arccos\left(-\frac{1}{4}\right)\right)$. Let's remind that $\cos\left(2\left(\frac{1}{2} \arccos\left(-\frac{1}{4}\right)\right)\right) = -\frac{1}{4}$ so $f\left(\frac{1}{2} \arccos\left(-\frac{1}{4}\right)\right) = \frac{9}{1-\frac{1}{4}} + \frac{25}{1+\frac{1}{4}} = 12 + 20 = 32$.

25 Answer: 2002.

As there must be at least one blue ball between any two red balls, and as the 5 red balls are arranged on the straight line, 4 blue balls are automatically arranged the red balls being arranged.

Then we can deduce that the problem is equivalent to count the number of combination of 9 blue balls and 5 red balls, so equivalent to the number of ways of arranging 5 red balls in 9 + 5 = 14 places.

Therefore we have $\frac{14 \times 13 \times 12 \times 11 \times 10}{1 \times 2 \times 3 \times 4 \times 5}$ = 2002 ways of arranging 13 identical blue balls and 5 identical red balls on a straight line such that between any 2 red balls there is at least 1 blue ball.

26 ◊◊ Answer: 49.

As $49 \times 2010 < 100\,000 < 50 \times 2010$, we have k = 49.

In fact for all subset A such that $\lfloor A \rfloor = 2010$, the subset A contains 2010 distinct numbers and so there are at least 2 distinct numbers a and b such that $|a - b| \le 49$.

Let's $A = \{a_1; a_2; ...; a_{2010}\}$ with $a_1 < a_2 < ... < a_{2010}$.

If for all *i* and *j*, $|a_i - a_j| > 49$, so $a_{i+1} \ge a_i + 50$ and then as $a_1 > 1$, $a_{2010} \ge 1 + 2009 \times 50 > 100000$.

Remark:

Using the partition $\{1; ...; 50\} \cup \{51; ...; 100\} \cup ... \cup \{99951, 100000\} = \bigcup_{i=0}^{1999} \{1 + 50i; 2 + 50i; ...; 50 + 50i\}$ (2000)

subsets of length 49 = 50 - 1), of $\{1; ...; 100000\}$, for any subset A such that $\lfloor A \rfloor = 2010 > 2000$, by the Pigeonhole Principle, there exist at least one subset $\{1 + 50 \ i; 2 + 50 \ i; ...; 50 + 50 \ i\}$ that contains at least 2 elements of A. Therefore there exists at least two elements a and b such that $|a - b| \le 49$.

Let's built a subset such that there ain't any distinct numbers *a* and *b* such that |a - b| < 49.

We part $\{1, ..., 100\,000\}$ in 2000 subsets: $\{1, ..., 50\} \cup \{51, ..., 100\} \cup ... \cup \{99\,951, 100\,000\}$.

Let's define $A = \{1; 50; 99; ...; 98442\} = \{49 \ j + 1; \ j = 0, 1, 2, ...2009\}$.

We have $\lfloor A \rfloor = 2010$ and as (49(j+1)+1) - (49j+1) = 49, then for two consecutive numbers *a* and *b* of *A*, |a-b| = 49 and for two distinct numbers of *A*, $|a-b| \ge 49$.

Consequently, 49 is the least possible value of k such that any subset A of S with $\lfloor A \rfloor = 2010$ contains two distinct numbers a and b with $|a - b| \le k$.

27 Answer: 112.

As we are only allowed to travel east or north, from A to B, in order to avoid the 4 points \times , we go through points C, D or E as shown on the figure below, and then from C, D or E to point B.

From A to C, there is only one way to go: 4 steps East.

From *C* to *B*, there are 2 steps East to do and 5 steps North, so there are $\binom{7}{2} = 21$ different ways.

From *A* to *D*, there are $\begin{pmatrix} 4 \\ 1 \end{pmatrix} = 4$ ways, and from *D* to *B*, there are $\begin{pmatrix} 7 \\ 2 \end{pmatrix} = 21$ different ways.

So from *A* to *B* going through *D*, there are $4 \times 21 = 84$ different ways.

From A to E, there is only way to go, but from E to B there are $\begin{pmatrix} 7\\1 \end{pmatrix} = 7$ different ways.

Finally there are 21 + 84 + 7 = 112 different ways to go from A to B with the conditions given.

28 Answer: 60.

Let's note O_1 and O_2 the centres respectively of C_1 and C_2 . As line *PM* is tangent to circle C_2 , the triangle $O_2 PM$ is right-angled at M.

Therefore, Pythagoreas' theorem gives: $O_2 P^2 = M P^2 + M O_2^2 = 8^2 + (\sqrt{20})^2 = 84$.

In triangle APO_2 , using the law of cosines, we thus obtain $O_2P^2 = AO_2^2 + AP^2 - 2AP \times AO_2\cos(x)$ so $84 = 8^2 + AP^2 - 16AP\cos(x)$ and finally $AP^2 - 16AP\cos(x) = 20$.

In triangle APO_1 , we obtain $O_1P^2 = AP^2 + AO_1^2 - 2AP \times AO_1\cos(x)$ so $AP^2 - 20AP\cos(x) = 0$ as $O_1P = AO_1$.

Finally, we have as $AP \neq 0$, $AP = 20 \cos(x)$ so $400 \cos^2(x) - 16 (20 \cos(x)) \cos(x) = 20$.

We deduce $\cos^2(x) = \frac{20}{80} = \frac{1}{4}$ and then $\cos(x) = \frac{1}{2}$. Consequently, $x^\circ = 60^\circ$.

29 Answer: 6.

Let *a*, *b* and *c* be integers with a > b > c > 0. If *b* and *c* are relatively prime, b + c is a multiple of *a*, and a + c is a multiple of *b*, determine the value of *a* b c.

As a > b and a > c then 2a > b + c.

Therefore as b + c is a strictly positive integer multiple of *a*, it falls b + c = a. This is the only multiple of *a*, strictly positive and strictly inferior to 2a.

Then a + c = b + c + c = b + 2c.

As a + c is a multiple of b, a + c - b also and so 2c is a multiple of b. But as b and c are relatively prime, c is not a multiple of b. We thus obtain that 2 is a multiple of b. So b = 1 or b = 2. As 0 < c < b then b > 1 so b = 2. It follows c = 1 and a = 3. Consequently, $a \ b \ c = 6$.

Find the number of subsets {*a*, *b*, *c*} of {1, 2, 3, 4, ..., 20} such that a < b - 1 < c - 3. As a < b - 1 then $b \ge a + 2$ and as b - 1 < c - 3, thus $c \ge b + 3$. Then as $c \le 20$, $b \le 17$ and $a \le 15$.

The number of subsets {*a*, *b*, *c*} of {1, 2, 3, 4, ..., 20} such that a < b - 1 < c - 3 is the number of subsets {*a*, *b*, *c*} such that when *a* describes {1; ...; 15}, *b* describes {*a* + 2; ...; 17} and *c* describes {*b* + 3; ...; 20}.

$$\begin{array}{c} \{a, b, c\} & \{1, 2, 3, 4, ..., 20\} \\ a < b - 1 < c - 3 \\ c \le 20 \ b \le 17 \\ a < b, c\} & \{1, 2, 3, 4, ..., 20\} \\ a < b - 1 < c - 3 \\ a \le b + 3 \\ a \le b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c - 3 \\ a < b - 1 < c -$$

With a = 1, we can have: • b = 3 so $c \in \{6; ...; 20\}$: 15 choices.

• b = 4 so $c \in \{7, ..., 20\}$: 15 choices.

• b = 17 so c = 20: 1 choice.

There are $1 + 2 + ... + 15 = \frac{16 \times 15}{2} = 120$ possibilities with *a* = 1.

With a = 2, we have:

• b = 4 so $c \in \{7; ...; 20\}$: 14 choices.

• b = 5 so $c \in \{8; ...; 20\}$: 13 choices.

• *b* = 17 so *c* = 20: 1 choice.

There are $1 + 2 + \ldots + 14 = 105$ possibilities with a = 2.

.

With a = 15, b = 17 and c = 20: there is 1 possibility with a = 15.

Finally we count $1 + (1 + 2) + (1 + 2 + 3) + \dots + (1 + 2 + 3 + \dots + 15) = 15 \times 1 + 14 \times 2 + \dots + 1 \times 15 = 680$.

Remark:

So

We also can associate each subset $\{a, b, c\}$ such that a < b - 1 < c - 3 to a subset $\{\alpha, \beta, \gamma\}$ such that $\alpha, \beta, \gamma \in \{1; 2; ...; 17\}$. (17) 17×16×15

There $\binom{17}{3} = \frac{17 \times 16 \times 15}{1 \times 2 \times 3} = 680$ possibilities.

31 **♦** Answer: 2780.

For *n* integer between 1 and 99 999, f(n) takes the values: 0, 1, 2, 3 and 4.

$$M = \sum_{f(i)=0} 0 \times 2^0 + \sum_{f(i)=1} 1 \times 2^1 + \sum_{f(i)=2} 2 \times 2^2 + \sum_{f(i)=3} 3 \times 2^3 + \sum_{f(i)=4} 4 \times 2^4$$
so
2×(number of numbers with one 0)

 $M = \frac{+8 \times (\text{number of numbers with two 0' s})}{+24 \times (\text{number of numbers with three 0' s})}$ +64 \times (number of numbers with four 0' s)

We then need to count how numbers of each type.

The numbers with one 0 can be written:

• a b c d 0, a b c 0 d, a b 0 c d, a 0 b c d with $a, b, c, d \in \{1, 2, ..., 9\}$.

There are 4×9^4 numbers of this type.

• a b c 0, a b 0 c, a 0 b c with $a, b, c \in \{1, 2, ..., 9\}$.

There are 3×9^3 numbers of this type.

• a b 0, a 0 b with $a, b \in \{1; 2; ...; 9\}$.

There are 2×9^2 numbers of this type.

• a 0 with $a \in \{1; 2; ...; 9\}$.

there are 9 numbers of this type.

Finally there are $4 \times 9^4 + 3 \times 9^3 + 2 \times 9^2 + 9 = 28602$ numbers between 1 and 99999 with one 0.

The numbers with two 0's can be written:

• *a b c* 00, *a b* 0 *c* 0, *a* 0 *b c* 0, *a b* 00 *c*, *a* 00 *b c* or *a* 0 *b* 0 *c* with *a*, *b*, *c* ∈ {1; 2; ...; 9}.

There are 6×9^3 numbers of this type.

• a b 00, a 0 b 0 or a 00 b with $a, b \in \{1; 2; ...; 9\}$.

There are 3×9^2 numbers of this type.

• a 00 with $a \in \{1; 2; ...; 9\}$.

There are 9 numbers of this type.

Finally there are $6 \times 9^3 + 3 \times 9^2 + 9 = 4626$ numbers between 1 and 99 999 with two 0's.

The numbers with three 0's can be written:

a b 000, *a* 0 *b* 00, *a* 00 *b* 0 or *a* 000 *b* with *a*, *b* ∈ {1; 2; ...; 9}. There are 4×9² numbers of this type. *a* 000 with *a* ∈ {1; 2; ...; 9}. There are 9 numbers of this type.

Finally there are $4 \times 9^2 + 9 = 333$ numbers between 1 and 99 999 with three 0's.

The numbers with four 0's are a 0000 with $a \in \{1; 2; ...; 9\}$. there are 9 numbers with four 0's.

We deduce: $M = 2 \times 28\ 602 + 8 \times 4626 + 24 \times 333 + 64 \times 9 = 102\ 780.$ thus $M - 100\ 000 = 2780$.

32 ◊◊ Answer: 5.

Determine the odd prime number p such that the sum of digits of the number $p^4 - 5p^2 + 13$ is the smallest possible.

For p = 3, $n = 3^4 - 5 \times 3^2 + 13 = 81 - 45 + 13 = 49$ so the sum of the digits is 13.

For p = 5, $n = 5^4 - 5 \times 5^2 + 13 = 625 - 125 + 13 = 513$ so the sum of the digits is 9.

For p = 7, $n = 7^4 - 5 \times 7^2 + 13 = 2401 - 245 + 13 = 2169$ so the sum is greater than 9.

For p = 11, $n = 11^4 - 5 \times 11^2 + 13$.

Let's note that therefore the last digit of *n* is given by $\ddagger 1 - 5 + 3 = 6 + 3 = 9$ so the sum of the digits of *n* is at least 9.

Next for all prime > 11, the last digit of n is 9.

In fact, the last digit of p^4 is given by the last digit of 1^4 , 3^4 , 7^4 or 9^4 as an odd prime ends by 1, 3, 7 or 9.

As $1^4 = 1$, $3^4 = 81$, $7^4 = 2401$, and $9^4 = 81^2 = \ddagger 1$ so the last digit of p^4 is 1.

Then the last digit of p^2 is the one of 1^2 , 3^2 , 7^2 or 9^2 so it is 1 or 9.

Therefore the last digit of $5 \times p^2$ is 5.

Finally the last digit of *n* is given by $\ddagger 1 - 5 + 3 = 9$.

Consequently, the sum of the digits of *n* is at least 9.

9 is the smallest possible and is rached for p = 5.

Remark:

 $p^4 - 5 p^2 + 13 = p^4 - 5 p^2 + 4 + 9 = (p-2) (p-1) (p+1) (p+2) + 9.$ We can notice that $(p-1) (p+1) = (p^2 - 1), (p-2) (p+2) = p^2 - 4$ and $X^2 - 5X + 4 = (X-1) (X-4)$, hence the factorisation of $p^4 - 5 p^2 + 4$. For p > 5, p-2, p-1, p, p+1, p+2 are 5 consecutive integers. As *p* is prime, one of p-2, p-1, p+1, p+2 is multiple of 5 and 2 are even. So (p-2) (p-1) (p+1) (p+2) is a multiple of 10.

Consequently the last digit of n is 9.

33 Answer: 360.

As BC = 3 AD = 3 CE, we deduce AD = CE and denote *a* this length.

Let's note b the height in triangle GCE relative to edge G and b' the height of trapezium ABCD.

We thus have
$$A_{GCE} = \frac{a b}{2} = 15$$
 and $k = \frac{4 a \times b}{2} = 2 a b'$.

Let H be the point of DC such that FH //AD.

As AD//FH//BC and as F is the midpoint of AB, point H is the midpoint of CD, $FH = \frac{1}{2}(AD + BC) = 2a$ and

the distance between lines AD and FH is equal to the distance between lines FH and BC, equal to half the height h' of the trapezium.

As $FH \parallel CE$ and the angles $\bot FGH$ and $\bot CGH$ are opposite angles so congruent, the triangles FGH and EGC are similar.

We deduce that the triangle *FGH* is the enlargment in the ratio 2 of the triangle *EGC*.

Thus its height issued at G in triangle EGC is 2 times the corresponding height at G in triangle EGC as edge G is common.

Consequently the distance between lines *FH* and *BC* is equal to 3 h. And thus the distance between lines *BC* and *AD* is 6 h: h' = 6 h.

We obtain
$$\frac{a \times \frac{b'}{6}}{2} = 15$$
 so $a b' = 12 \times 15 = 180$.
Finally $k = 2 a b' = 2 \times 180 = 360$.

34 ◊◊ Answer: 75.

As P(1) = 25, then $a_0 + a_1 + \dots + a_n = 25$.

As the coefficients $a_0, a_1, a_2, ..., a_n$ are non-negative integers, $0 \le a_i \le 25$ for i = 1 to n.

As $P(27) = 1\,771\,769$, then $a_0 + 27\,a_1 + 27^2\,a_2 + \dots + 27^n\,a_n = 1\,771\,769$.

As $0 \le a_i \le 25 < 27$ for i = 1 to *n*, we have $1\,771\,769 = \overline{a_n \dots a_2 a_1 a_0}^{27}$, it is to say that $a_n \dots a_2 a_1 a_0$ is the writing of $1\,771\,769$ in base 27.

 $Yet 1771769 = 65621 \times 27 + 2 = (2430 \times 27 + 11) \times 27 + 2 = (90 \times 27 \times 27 + 11) \times 27 + 2.$

So $1771769 = (3 \times 27 + 9) \times 27^3 + 11 \times 27 + 2 = 3 \times 27^4 + 9 \times 27^3 + 11 \times 27 + 2$. It follows that $n = 4, a_0 = 2, a_1 = 11, a_2 = 0, a_3 = 9$ and $a_4 = 3$.

Hence
$$P(x) = 2 + 11x + 9x^3 + 3x^4$$
.

 $a_0 + 2a_1 + 3a_3 + 4a_3 + 5a_4 = 2 + 2 \times 11 + 3 \times 0 + 4 \times 9 + 5 \times 3 = 75.$

Let three circles Γ_1 , Γ_2 , Γ_3 with centres A_1 , A_2 , A_3 and radii r_1 , r_2 , r_3 respectively be mutually tangent to each other externally.

Suppose that the tangent to the circumcircle of the triangle $A_1 A_2 A_3$ at A_3 and the two external common tragents of Γ_1 and Γ_2 meet a common point *P*, as shown on the figure below.

Given that $r_1 = 18$ cm, $r_2 = 8$ cm and $r_3 = k$ cm, find the value of k.

First, as the two external common tangents of Γ_1 and Γ_2 meet in *P*, by symmetry, *P*, A_1 and A_2 are aligned. Moreover, we can define two right-angled triangles PA_1E_1 and PA_2E_2 where E_1 and E_2 are the points of tangency of one tangent with respectively circle C_1 and circle C_2 .

These two triangles are similar and so $\frac{PA_2}{PA_1} = \frac{r_2}{r_1}$.

Second, the power of point P relatively to the circumcircle of triangle $A_1 A_2 A_3$ is known independent of the chosen point on this circumcircle.

We so have $PA_3^2 = PA_1 \times PA_2 = PO^2 - r^2$ with O centre of the circumcircle and r its radius.

Therefore
$$\frac{PA_3}{PA_2} = \sqrt{\frac{PA_1}{PA_2}} = \sqrt{\frac{r_1}{r_2}}.$$

Third the law of sines in triangle PA_2A_3 gives $\frac{PA_3}{\sin(\ell A_3A_2P)} = \frac{PA_2}{\sin(\ell A_2A_3P)}$ so $\frac{PA_3}{PA_2} = \frac{\sin(\ell A_3A_2P)}{\sin(\ell A_2A_3P)}$. The law of sines in triangle $A_1A_2A_3$ gives $\frac{\sin(\ell A_1A_2A_3)}{\sin(\ell A_2A_1A_3)} = \frac{r_1+r_3}{r_2+r_3}$.

As the angles $LA_1A_2A_3$ and LA_3A_2P are complementary angles, then $sin(LA_1A_2A_3) = sin(LA_3A_2P)$.

 $A_2 = I A_2 A_2 P$

Then let's show that $L A_2 A_1 A_3 = L A_2 A_3 P$.

Let O be the centre of the circumcircle of triangle $A_1 A_2 A_3$. $2 | A_2 A_1 A_2 = | A_2 O A_3$

$$\begin{array}{c} DA_{2} = DA_{2} + DA_{2} + DA_{3} + DA_{3$$

$$LOA_{3}A_{2} = \frac{1}{2} - LPA_{3}A_{2}$$

$$LOA_{3}A_{2} = \pi - 2(\frac{\pi}{2} - LPA_{3}A_{2}) = 2LPA_{3}A_{2}$$

$$LA_{2}A_{3}$$

$$LA_2A_1A_3 = LA_2A_3P$$

Then $2 \perp A_2 A_1 A_3 = \perp A_2 O A_3$ using the inscribed angle theorem. As $O A_2 = O A_2$, $\perp O A_2 A_3 = \perp O A_3 A_2$ and then $\perp A_2 O A_3 + 2 \perp O A_3 A_2 = \pi$.

Moreover, as line PA_3 is tangent to the circumcircle with center $O, LOA_3A_2 + LPA_3A_2 = \frac{\pi}{2}$.

We deduce $LOA_3A_2 = \frac{\pi}{2} - LPA_3A_2$ so substituing in the first equality, we obtain $LA_2OA_3 = \pi - 2(\frac{\pi}{2} - LPA_3A_2) = 2LPA_3A_2$ and finally $LA_2A_1A_3 = LA_2A_3P$. Thus $\sin(LA_2A_1A_3) = \sin(LA_2A_3P)$.

So we obtain $\frac{PA_3}{PA_2} = \frac{r_1 + r_3}{r_2 + r_3}$. Finally, $\sqrt{\frac{r_1}{r_2}} = \frac{r_1 + r_3}{r_2 + r_3}$. So $(r_2 + r_3)\sqrt{r_1} = (r_1 + r_3)\sqrt{r_2}$ then $r_3(\sqrt{r_1} - \sqrt{r_2}) = r_1\sqrt{r_2} - r_2\sqrt{r_1} = \sqrt{r_1r_2}(\sqrt{r_1} - \sqrt{r_2})$: $r_3 = \sqrt{r_1r_2}$.

Consequently, $r_3 = \sqrt{18 \times 8} = \sqrt{144} = 12$.